Đồ nhựa (plastic) không chỉ trông giống thức ăn, nó phát ra mùi và âm thanh hệt như thức ăn. Rác thải nhựa của con người có đủ loại hình dạng, kích cỡ và màu sắc khác nhau, được đổ thẳng trực tiếp ra biển. Lượng rác này tích tụ ngày càng nhiều, xâm lấn môi trường sống của các sinh vật biển, trở thành nguồn “thực phẩm” chính cho chúng.
(ảnh: Troy Mayne/Greenpeace)
Trong chương trình Blue Planet II gần đây, David Attenborough – phát thanh viên, nhà tự nhiên học người Anh – kể về 1 con hải âu đi kiếm thức ăn cho con non. “Nó ngậm đầy trong miệng… không phải cá, cũng không phải mực, mà là nhựa.”
Attenborough mô tả, đây là 1 điều kỳ lạ và rất đáng thương. Loài hải âu Albatrosses có thể bay hàng ngàn cây số để tìm kiếm con mồi và có thể bắt cá một cách dễ dàng. Vậy vì sao chúng lại có thể bị lừa, trở về từ chuyến đi gian nan của mình, không có gì ngoài những miếng nhựa? Thật ra, hải âu không phải là trường hợp duy nhất. Theo ghi nhận gần đây, đã có ít nhất 180 loài động vật biển thường xuyên tiêu thụ nhựa, từ các sinh vật phù du (zooplankton) đến cá voi khổng lồ.
Đồ nhựa đã được tìm thấy trong ruột của 1/3 lượng cá đánh bắt được ở Anh, gồm nhiều loài cá mà chúng ta tiêu thụ hằng ngày. Ngoài ra, chúng cũng được phát hiện trong ruột con trai và tôm hùm. Tóm lại, vô số các loài động vật biển đang ăn rác thải nhựa, bởi con người vẫn không ngừng đổ 12,7 triệu tấn phế thải vào đại dương mỗi năm.
Vì số lượng này ngày càng tăng qua từng năm, đến một lúc các loài sinh vật biển không còn gì để tiêu thụ ngoài nhựa. Trong đó, các loài sinh vật phù du cũng không ngoại lệ. Moira Galbraith, nhà sinh thái học tại Viện Khoa học Đại dương, Canada cho biết: “Nếu hạt nhựa rơi vào 1 phạm vi kích thước nhất định thì [đối với các loài sinh vật biển] nó được xác nhận là thức ăn.”
Đến nay, nhiều người thắc mắc rằng rác thải từ nhựa thật sự đã trôi xa đến đâu. Một nghiên cứu đã cho thấy chúng đã trầm xuống tận đáy biển. Qua 12 địa điểm thử nước biển tại Đại Tây Dương, Địa Trung Hải và Ấn Độ Dương từ năm 2001 đến 2012, người ta thấy hàm lượng các vi hạt nhựa (microplastics) tăng đột biến. Kích thước của chúng chỉ dài 1mm và được tìm thấy từ độ sâu 300 mét dưới Địa Trung Hải đến trên 3.000 mét dưới đáy biển, với mật độ cao gấp 1.000 lần so với lượng rác thải nhựa tìm thấy trên bề mặt.
Nhựa đã trôi dạt tới Nam Cực (ảnh: Hội khảo sát Nam Cực của Anh Quốc)
Cho đến nay, những nghiên cứu về lòng sông cổ vùng đồng bằng sông Cửu Long rất ít. Xác định những lòng sông cổ thời kỳ Neogen – Pleistocene thực sự khó khăn. Việc này chỉ có thể thực hiện được qua tài liệu các lỗ khoan đủ dày với các kết quả phân tích tin cậy, nhất là tuổi các phân vị địa tầng.
Xác định sông cổ (các dòng đã ngừng hoạt động) trong Holocen thường dễ dàng hơn do những dấu vết còn để lại trên bề mặt đồng bằng qua tư liệu viễn thám và có thể kiểm tra bằng công trình khoan, đào bề mặt. Tư liệu viễn thám rất hữu ích trong việc nhận dạng lòng sông cổ qua đặc trưng tôn ảnh và hình thái dạng địa hình. Tuy vậy, việc nhận dạng lòng sông cổ một số khu vực gặp khó khăn khi bề mặt đồng bằng bị biến đổi nhiều bởi các hoạt động nhân sinh.
Nghiên cứu lòng sông cổ sẽ giúp hiểu biết môi trường cổ địa lý, đồng thời nhìn nhận khách quan hơn những hiện tượng xói lở hay bồi tụ xảy ra dọc theo các sông, rạch hiện nay cũng như trong tương lai. Hơn nữa, kết quả nghiên cứu có thể góp phần hiểu biết thêm các nền văn hóa cổ gắn với sông nước như Văn hóa Óc Eo chẳng hạn.
Bài viết này giới thiệu dấu vết lòng sông cổ trên bề mặt đồng bằng sông Cửu Long, khu vực tây Sông Hậu từ Ankor Borei đến Rạch Giá được nhận dạng từ tư liệu viễn thám.
II. Sơ lược lịch sử nghiên cứu
Năm 1930, lần đầu tiên Pierre Paris – nhiếp ảnh gia/nhà khảo cổ học người Pháp đã chụp ảnh hàng không khu vực tây sông Hậu (Bassac River) từ Ankor Borei (Campuchia) đến Rạch Giá (Việt Nam). Paris, đã ghi nhận những kênh cổ trên đồng bằng và đường viền hình chữ nhật lớn, sau này được công nhận là tàn tích của đô thị Óc Eo [4].
Vào những năm 1940, Louis Malleret – nhà khảo cổ học người Pháp đã khai quật tại Óc Eo, xác định hệ thống kiểm soát nước rộng lớn, kiến trúc đồ sộ và nhiều loại hàng hóa thương mại quốc tế [4].
Trong thập niên 1970, sau một thời gian gián đoạn kéo dài bởi Thế chiến II và Chiến tranh Việt Nam, các nhà khảo cổ Viện Khoa học Xã hội tại thành phố Hồ Chí Minh đã thực hiện nhiều nghiên cứu mới ở khu vực đồng bằng sông Cửu Long.
Cuộc điều tra các kênh rạch tại Eo Eo gần đây gợi ý rằng chúng đã từng kết nối với thủ đô Angkor Borei, và có thể tạo điều kiện thuận lợi cho mạng lưới thương mại đáng chú ý của vương quốc Phù Nam [4].
Sơ đồ hệ thống kênh cổ [2] của Paris cho thấy, các kênh đào thường thẳng và ngắn; dài nhất là kênh 4, kéo thành một đường khá thẳng từ Ankor Borei đến Óc Eo (khoảng 85) km. Các kênh tỏa ra từ hai trung tâm: 1) tại Ankor Borei, các kênh tỏa về phía nam; tại Óc Eo các kênh tỏa ra nhiều hướng (Hình 1).
Sự xuất hiện của sóng thần Indonesia cùng với sức mạnh hủy diệt mà nó mang theo hoàn toàn nằm ngoài dự đoán của những nhà nghiên cứu.
Bản đồ của Cục khảo sát địa chất Mỹ
Các nhà khoa học bày tỏ sự bất ngờ trước độ mạnh của sóng thần tàn phá thành phố Palu, Indonesia, vào cuối tuần trước, theo New York Times. Họ cho rằng trận động đất xuất hiện trước đó khó có thể kéo theo những cơn sóng mang sức mạnh hủy diệt như vậy.
“Chúng tôi dự đoán động đất có thể gây sóng thần, nhưng không lớn tới mức đó”, Jason Patton, nhà địa vật lý làm việc cho công ty tư vấn Temblor kiêm giảng viên ở Đại học Humboldt, California, cho biết. “Khi những sự kiện kiểu này xảy ra, chúng tôi thường khám phá ra nhiều điều chưa từng quan sát được trước đây”.
Trận động đất 7,5 độ xuất hiện vào chiều tối hôm 28/9 gây chấn động dọc theo vùng ven biển đảo Sulawesi, cách Palu khoảng 80 km về phía bắc. Theo một số nhân chứng, trong vòng 30 phút sau, những cơn sóng cao tới 6 mét đập vào bờ, phá hủy nhiều tòa nhà, đập nát xe cộ và giết chết hàng trăm người dân trong thành phố.
Số người chết cao có thể phản ánh hiện trạng thiếu hệ thống phát hiện và cảnh báo sóng thần tân tiến của Indonesia, theo giới chuyên gia. Những cộng đồng dân cư khác trên đảo Sulawesi, bao gồm thành phố Donggala, cũng bị sóng thần tàn phá, nhưng có rất ít thông tin về mức độ thiệt hại hoặc số người chết bên ngoài Palu.
Thảm họa sóng thần thường là kết quả của siêu động đất khi những mảng lớn vỏ Trái Đất biến dạng, dịch chuyển theo chiều dọc dọc theo đứt gãy. Quá trình này chuyển chỗ đột ngột một lượng nước khổng lồ, tạo ra cơn sóng di chuyển ở tốc độ cao dọc bồn trũng đại dương và gây thiệt hại ở cách nơi hình thành động đất hàng nghìn kilomet.
Một cây cầu bị phá hủy do động đất và sóng thần ở Palu, Indonesia. Ảnh: Reuters.
Ngày 5-10, Ban Quản lý Công viên địa chất Lý Sơn, tỉnh Quảng Ngãi tổ chức Hội nghị thông tin Công viên địa chất Lý Sơn với sự phối hợp của Viện Khoa học Địa chất và Khoáng sản (Bộ TN-MT) và các chuyên gia trong nước cũng như quốc tế có kinh nghiệm về Công viên địa chất toàn cầu UNESCO.
Indonesia suốt nhiều năm không hoàn thiện được hệ thống cảnh báo sóng thần hiện đại, khiến nhiều người bất ngờ khi thảm họa xảy ra.
Cơ quan Khí tượng, Khí hậu và Địa lý Indonesia (BMKG) hôm qua thừa nhận việc phải dựa vào dữ liệu không chính xác được thu thập từ cảm biến ở quá xa ngoài khơi đã khiến họ dỡ bỏ cảnh báo sóng thần 34 phút sau khi ban bố, dù bức tường sóng khổng lồ cao tới 6 m ngay sau đó ập vào thành phố Palu trên đảo Sulawesi, cướp đi sinh mạng của ít nhất 1.200 người.
Giới chuyên gia cho rằng thực tế này phản ánh những hạn chế và cả thất bại trong hệ thống cảnh báo sóng thần của Indonesia, quốc gia nằm trên “Vành đai Lửa” của Thái Bình Dương và thường xuyên hứng chịu nguy cơ động đất, sóng thần rất cao, theo AP.
Sau khi thảm họa kép động đất, sóng thần tấn công khu vực vào năm 2004 khiến gần 250.000 người thiệt mạng, cộng đồng quốc tế đã hỗ trợ Indonesia xây dựng một mạng lưới cảm biến công nghệ cao nhằm thay thế cho hệ thống cảnh báo lạc hậu dọc bờ biển nước này, với mục tiêu giảm bớt thương vong khi thảm họa xảy ra.
Quỹ Khoa học Quốc gia Mỹ và Đức khi đó đã giúp Indonesia triển khai mô hình thí điểm cảnh báo trị giá 3 triệu USD, gồm mạng lưới 22 phao nổi kết nối với các cảm biến được đặt dưới đáy biển nhằm kịp thời phát hiện dấu hiệu động đất, sóng thần và đưa ra tín hiệu cảnh báo kịp thời.
Hệ thống này được triển khai ngoài khơi Padang, thành phố nằm ngay cạnh một vết đứt gãy địa chất lớn và rất dễ hứng chịu sóng thần. Các cảm biến áp suất, địa chấn chôn dưới đáy biển có thể phát tín hiệu dưới dạng sóng âm trong lòng biển và chuyển tới các cảm biến khác cách đó 20-30 km rồi tiếp tục truyền vào đất liền.
Mạng lưới này có thể cung cấp thông tin đáng tin cậy về nguy cơ sóng thần trong vòng 1-3 phút, thay vì 5-45 phút như phao nổi hay những thông tin rất hạn chế từ thiết bị đo thủy triều. Tuy nhiên, dự án cần được lắp thêm vài km cáp quang để nối cảm biến cuối cùng với một trạm quan trắc trên đất liền, nơi dữ liệu có thể truyền qua vệ tinh tới cơ quan địa chất để phát cảnh báo sóng thần cũng như tới các cơ quan chức năng.
Nhưng từ khi được triển khai thí điểm cho tới tháng 1/2017, dự án vẫn chờ chính phủ Indonesia cấp ngân sách 1 tỷ rupiah (69.000 USD) để lắp đặt đoạn cáp trên và hoàn thiện hệ thống. Sau đó, tình trạng cắt giảm ngân sách khiến dự án liên tục bị đùn đẩy giữa các cơ quan chính phủ và hệ thống vẫn chỉ dừng lại ở mức độ thí điểm.
Việc thiếu ngân sách để bảo trì, bảo dưỡng, cộng thêm tình trạng người dân phá hoại, trộm cắp thiết bị khiến hệ thống này gần như bị vô hiệu hóa. Khi trận động đất lớn xảy ngoài khơi đảo Sumatra năm 2016, toàn bộ các hệ thống phao nổi và cảm biến trị giá hàng trăm nghìn USD mỗi chiếc đều không hoạt động.
Nguyên lý hoạt động của hệ thống cảm biến, phao nổi khi phát hiện sóng thần. Đồ họa: ResearchGate.
Vị trí của đa dạng địa học trong đa dạng thiên nhiên là gì?
Đa dạng địa học (ĐDĐH) là sự đa dạng của các yếu tố tự nhiên, như các khoáng vật, các loại đá, hóa thạch, dạng địa hình và cảnh quan của chúng, các kiểu đất, và các quá trình địa chất/địa mạo hoạt động.
Cùng với đa dạng sinh học, ĐDĐH tạo nên sự đa dạng tự nhiên của Trái Đất. ĐDĐH làm nền móng cho đa dạng sinh học và cung cấp cho xã hội những lợi ích bao gồm các dịch vụ điều tiết, hỗ trợ, cung cấp và văn hóa.
Di sản địa học (Geoheritage)
Di sản địa học là gì ?
Di sản địa học là một phần di sản tự nhiên của một diện tích (hoặc một điểm) nào đó được cấu thành bởi các yếu tố ĐDĐH với giá trị địa chất đặc biệt và do đó xứng đáng được bảo vệ vì lợi ích của các thế hệ hiện tại và tương lai. Di sản địa học có thể bao gồm cả các yếu tố tại chỗ (geosites) hoặc các yếu tố đã di chuyển (các tập hợp các mẫu vật địa chất) có sự quan trọng về cổ sinh, địa mạo, khoáng vật, thạch học và địa tầng…
Tập hợp các hành động hướng đến thông tin quản lý các điểm địa chất bao gồm kiểm kê và đánh giá, bảo tồn, bảo vệ theo luật định, diễn giải và giám sát các điểm địa di sản.
Việc quản lý các địa di sản di chuyển (ex situ) cũng là một hoạt động bảo tồn địa học. Bảo tồn địa học được coi là một ngành mới nổi trong khoa học địa chất.
Hội nghị quốc tế lần thứ 8 về Công viên địa chất toàn cầu UNESCO diễn ra tại Công viên địa chất toàn cầu UNESCO Adamello Brenta, tỉnh Trentino, Ý, từ ngày 11 đến ngày 14 tháng 9 năm 2018.
Hội nghị, với chủ đề chính: “Công viên địa chất và phát triển bền vững”
Từ ngày 8 đến ngày 10 tháng 9, đã có các cuộc họp của Hội đồng UUG, GGN ExB, và các cuộc họp Mạng lưới Khu vực: EGN AC và CC, APGN AC và CC, LACGN AC và CC.
Lễ khai mạc và các bài giảng quan trọng diễn ra vào ngày 11 tháng 9.
Ngày 11/9, 12 và 14/9 các báo cáo khoa học trình bày đồng thời tại 6 tiểu ban như sau:
CVĐC, du lịch bền vững và phát triển bền vững địa phương (Geoparks, sustainable tourism and sustainable local development)
Bảo tồn, Khoa học và nghiên cứu (Conservation, science and research)
Giáo dục, nhận thức cộng đồng và truyền thông (Education, public awareness and communication)
CVĐC, BĐKH và tai biến địa chất (Geoparks, climate change and geo-hazards)
Hợp tác giữa UNESCO khu vực và toàn cầu (Regional and International UNESCO collaborations)
Nhiều người đang phát cuồng về cao ốc 81 tầng Landmark và công viên Central Park (thuộc tổ hợp dự án Vinhomes Tân Cảng, Q.Bình Thạnh, TP.HCM) đã “lung linh, chễm chệ” trên nền cảng cũ.
Dù tài sản làm cho Nhà nước, cũng không được phép
Tương tự như Đồng Nai, ông Tứ e ngại những gì đang diễn ra ở TP.HCM tiếp tục tạo tiền lệ cho việc gia tăng vi phạm và lấn chiếm hành lang thoát lũ, dòng chảy của các con sông trên lãnh thổ Việt Nam.
Theo ông, không thể lập luận rằng việc xây Central Park làm công trình công cộng là đúng quy định được. “Dòng chảy sông cần được duy trì một cách tự nhiên như vốn có được quy định bởi tiến trình lịch sử mạng thoát nước tự nhiên, cũng như hệ sinh thái đặc thù riêng. Cầu cảng cũ vẫn khác với khối bê tông mặt đất như hiện nay, bởi cầu cảng vẫn thông nước. Do đó, công trình này sẽ tạo áp lực nước cho phía bờ đối diện”, ông Tứ nói.
Ông cho rằng ở Vinhomes Tân Cảng hiện tồn tại 2 vấn đề. Thứ nhất, lấn chiếm mặt nước để làm công trình, điều đó hoàn toàn sai luật, gồm các Luật Tài nguyên nước, Luật Bảo vệ môi trường, Luật Phòng chống thiên tai và Luật Giao thông đường thủy nội địa.
“Không ai có quyền lấy sông của mọi người làm tài sản, dù tài sản ấy có làm cho Nhà nước cũng không được phép. Chưa kể, trong điều kiện thiên nhiên đang thê thảm như hiện nay, phải giữ gìn dòng sông, đã không giữ được lại còn phá hoại, lại cứ nhăm nhe “chém nó”, ông Tứ bức xúc.
Một góc Central Park
Thứ hai, về mặt khoa học, khi lấp cầu cảng như vậy đã tạo nên một “mỏ hàn” rất lớn để đẩy nước sang phía bờ bên kia.
Tác động như thế nào, theo ông Tứ cần phải nghiên cứu. Nhưng nguyên tắc về chỉnh trị sông có hai hình thức. Một là kè, như ta thấy người ta thường dùng bê tông đắp lên. Dù không lấn ra sông, nhưng kè vẫn có tác động đến bờ đối diện, bởi tạo ra thế bên này cứng, bên kia vẫn là đất mềm.
Hình thức còn lại nguy hiểm hơn dùng trong trường hợp người ta muốn làm xói lở một bên sông và cho bên còn lại bồi, đó là “mỏ hàn”. Thuật ngữ chuyên môn “mỏ hàn” có thể hình dung là một khối bê tông cứng chòi ra lòng sông.
“Dù không to như Tân Cảng, nhưng “mỏ hàn” có thể lái dòng nước sang phía kia để tác động cho bờ đó lở đi, nói chi cả khu vực cầu cảng đã bị lấp. Nói cách khác, khu vực Tân Cảng như hiện nay là một “mỏ hàn” cực lớn”, ông Tứ phân tích.
Ông nói tiếp: “Họ sẽ cho rằng có ăn thua gì, sông to như thế, chúng tôi chỉ làm một tí “mỏ hàn”. Nhưng với tôi là không! Vì chắc chắn động lực của dòng chảy bị biến động khi các bờ sông bị thay đổi”.
“Dấu ấn” chiếm mặt sông
Luật sư Phùng Thanh Sơn (Đoàn Luật sư TP.HCM) đánh giá tình trạng lấn chiếm, san lấp kênh, rạch, sông để làm dự án ở TP.HCM khá phổ biến và ở nhiều mức độ khác nhau. Tình trạng này không phải mới diễn ra gần đây, nó đã xảy ra từ hàng chục năm trước.
Về nguyên tắc, theo ông Sơn, chủ đầu tư không được phép xây dựng trong phạm vi hành lang bảo vệ bờ sông, kênh rạch (trừ trường hợp các công trình hạ tầng kỹ thuật, hạ tầng xã hội, các công trình quốc phòng, phòng cháy chữa cháy, công trình phục vụ công ích có thời hạn thì được phép xây dựng).
“Từ đó, có thể thấy nhiều lý do để chủ đầu tư muốn lấn sông. Do hành lang bảo vệ sông, kênh rạch có thể tính từ mép được xây dựng, cải tạo nên nếu việc xây dựng, cải tạo đó lấn sông, kênh rạch thì phần đất trong hành lang bảo vệ bờ thực tế sẽ ít đi. Hay nói cách khác, việc lấn sông, kênh rạch sẽ đem lại nhiều lợi ích cho chủ đầu tư như diện tích đất mà chủ đầu tư có thể xây dựng nhà ở, cao ốc… sẽ tăng lên mà không vượt quá mật độ xây dựng, hệ số sử dụng đất mà pháp luật quy định”, ông Sơn nói.
Việc biến đất vốn dĩ thuộc hành lang bảo vệ bờ sông, kênh rạch thành đất thương mại bán cho khách hàng giúp chủ đầu tư có đủ không gian để có thể tạo ra một “dấu ấn” cho dự án của mình, để bán nhà với giá cao bằng việc xây công trình hạ tầng xã hội trong hành lang bảo vệ bờ sông, kênh rạch đó, theo luật sư Sơn.
Tổ hợp dự án Vinhomes Tân Cảng trước đây là khu vực cảng nên hiển nhiên phải có các công trình bến cảng, cầu cảng… để phục vụ cho việc neo đậu tàu, bốc dỡ hàng hóa.
“Đã là cầu cảng thì không thể xây dựng sát bờ mà phải cách xa bờ. Do đó cầu cảng không được xem là bờ của sông Sài Gòn nên không thể lấy cầu cảng làm cơ sở để xác định hành lang bảo vệ bờ sông Sài Gòn và cho xây dựng công viên trên đó. Chưa kể, thiết kế cảng rất khác với việc lấp các vùng nước trong cảng để làm công viên. Bởi điều đó ảnh hưởng và thay đổi dòng chảy”, ông Sơn lập luận.
Theo ông, việc trên rất dễ kiểm chứng. Cứ lấy hồ sơ thiết kế cảng trước đây và so với thực trạng hiện nay sẽ biết ngay là Vingroup có lấn, lấp sông Sài Gòn hay không; vùng nước nào trong cảng bị lấp, vùng nước nào không. Dựa vào thiết kế cảng trước đây chúng ta cũng xác định được vị trí bờ sông Sài Gòn đang ở đâu để từ đó xác định chính xác hành lang bảo vệ bờ sông Sài Gòn.
Theo Quyết định 150/2004/QĐ-UBND trước đây về quy định quản lý, sử dụng hành lang trên bờ sông, kênh, rạch trên địa bàn thành phố và nay là Quyết định 22/2017/QĐ-UBND của UBND TP.HCM, thì hành lang bảo vệ bờ sông, kênh rạch cấp kỹ thuật I, II mỗi bên là 50m; cấp kỹ thuật III, IV mỗi bên là 30m; cấp kỹ thuật V, VI mỗi bên là 20m và đối với kênh rạch chưa được phân cấp kỹ thuật mỗi bên là 10m, được tính từ mép bờ cao của sông, kênh, rạch (theo dạng tự nhiên hoặc được xây dựng, cải tạo) vào bên trong phía đất liền. Chủ đầu tư không được xây dựng các công trình nhà ở, cơ sở kinh doanh trong phạm vi hành lang bảo vệ bờ sông, kênh rạch… Và các công trình xây dựng phải đảm bảo độ lùi so với hành lang bảo vệ bờ sông, kênh rạch.
Nhiều nghiên cứu trong khuôn khổ Tổ chức Liên chính phủ về Biến đổi khí hậu – IPCC đã dự báo mức biển toàn cầu sẽ tăng từ 17,8 – 54,42 cm vào cuối thế kỷ (2090 – 2099 so với giai đoạn 1980 – 1999) [8]. Dựa vào các kịch bản của IPCC [8], Bộ Tài nguyên môi trường Việt Nam cũng đưa ra kịch bản dự đoán vào cuối thế kỷ 21, nhiệt độ ở nước ta có thể tăng 2,3oC, và mực nước biển dâng 75cm so với trung bình thời kỳ 1980 – 1999 [2].
Mực biển dâng sẽ kéo theo các tai biến đới bờ mà nghiêm trọng nhất là ngập lụt trên diện rộng [10]. Một khu vực ngập dài hạn sẽ ảnh hưởng đến môi trường tự nhiên cũng như làm thay đổi điều kiện kinh tế xã hội của khu vực đó. Do đó đánh giá mức độ tổn thương đới bờ do mực biển dâng trong tương lai là cơ sở cho việc xây dựng hành động ứng phó. Phương pháp đánh giá tổn thương trong bài báo này được sử dụng dựa trên các yếu tố về hải văn và địa chất, địa mạo.
Bài báo này trình bày phương pháp thành lập bản đồ phân vùng tổn thương bờ biển do mực nước biển dâng với kịch bản 75 cm vào năm 2100. Các điểm đánh giá và thể hiện mức độ tổn thương trên bản đồ sẽ là cơ sở cho việc đánh giá rủi ro ven biển và là công cụ hữu ích phục vụ cho việc Quản lý tổng hợp đối bờ (ICZM – Integrated Coastal zone Management) [10].
2.Khu vực nghiên cứu
Khu vực nghiên cứu thuộc dải bờ biển từ Hà Tiên đến Kiên Lương, tỉnh Kiên Giang, dài 72,8 km. Khí hậu gió mùa cận xích đạo chịu ảnh hưởng của biển với đặc điểm chung là nóng ẩm, mưa nhiều theo mùa nhưng ít bão. Lượng mưa trung bình năm đạt 1.600 đến 2.000mm [3]. Nhiệt độ trung bình năm cao 27,3oC [3]. Chế độ nhật triều là chủ yếu.
Đây là một vùng đất giàu tài nguyên: đất, nước, biển, khoáng sản và nhất là tài nguyên du lịch. Bên cạnh đó tính đa dạng sinh học và đa dạng địa học cũng là một thế mạnh của vùng [6]. Bảo tồn tính đa dạng sinh học cũng là một vấn đề được quan tâm ở khu vực này. Nhất là các hệ sinh thái mang tính chất đặc trưng của cả vùng như thảm thực vật trên núi đá vôi, hay hệ sinh thái đồng cỏ bàng [6].
Dân cư phân bố tập trung chủ yếu tại thị xã Hà Tiên, thị trấn Kiên Lương và các vùng đất thấp ven biển, hay dọc theo quốc lộ. Nền kinh tế địa phương phụ thuộc vào nông nghiệp trồng lúa, hoa màu, kết hợp nuôi trồng thủy sản cũng như du lịch, dịch vụ, khai thác khoáng sản.
3. Dữ liệu
Ngoài việc các tài liệu tổng quan về điều kiện tự nhiên khu vực, nghiên cứu này chủ yếu dựa vào các dữ liệu thuộc tính và không gian của các bản đồ và ảnh viễn thám. Các dữ liệu sử dụng chính được trình bày trong Bảng 1.
4.Phương pháp
Chỉ số tổn thương đới bờ (CVI) được V. Gornitz và cộng sự [11] xây dựng như là công cụ để đánh giá khả năng thay đổi của vùng bờ biển. Chỉ số này được áp dụng cho cả khu vực quy mô vùng hoặc quốc gia trong việc quản lý tài nguyên đới bờ.
Theo V. Gornitz và cộng sự [8], CVI được tính toán như sau:
Chỉ số tổn thương đới bờ được xây dựng từ các biến mà có tác động lý học trực tiếp lên sự thay đổi đường bờ biển trong điều kiện mực nước biển dâng gồm: địa mạo bờ biển (đặc điểm hình thái các vách bờ), địa chất bờ biển (đặc điểm thạch học các đá cấu tạo bờ và bãi), độ dốc của bờ về phía biển, tốc độ bồi/ xói, độ cao địa hình, mực nước biển dâng trung bình, mực triều trung bình, độ cao sóng trung bình.
Sự định lượng tổn thương đới bờ dựa vào các biến sẽ phản ánh cụ thể vùng bị tác động lý học của nước biển dâng tùy theo mức độ. Do đó công thức tính CVI trong nghiên cứu sẽ là:
Địa mạo
Yếu tố địa mạo được phân chia làm 5 cấp, mô tả mối liên quan giữa đặc điểm hình thái các vách bờ và mức độ xói lở. Thang phân chia được tính điểm từ 1 đến 5 theo mức độ gia tăng sự tổn thương đới bờ đối với hiện tượng nước biển dâng. Trong nghiên cứu này, yếu tố địa mạo chủ yếu dựa vào khảo sát thực địa. Các phân cấp trong thang phân loại tổn thương được trình bày chi tiết ở bảng 2.
Địa chất
Yếu tố địa chất cũng được phân thành 5 cấp, mô tả mối liên quan giữa các loại đá/ trầm tích cấu tạo nên bờ biển và mức độ xói lở. Bờ có cấu tạo từ đá gốc của hệ tầng Núi Cọp (Đá tuff, ryolit xen phiến silic, cát kết, bột kết) hoặc hệ tầng Hòn Heo (Đá cát kết thạch anh, cát kết quazit, đá phiến bột kết) là các loại đá vững chắc nhất trong khu vực nghiên cứu, do đó mức độ tổn thương do biển dâng sẽ là thấp nhất (thang điểm 1). Dạng bờ có cấu tạo bởi trầm tích bở rời như cát, bột, sét kém ổn định nhất, do đó mức độ tổn thương sẽ là cao nhất (thang điểm 5). Các phân cấp trong thang phân loại tổn thương cũng được trình bày chi tiết ở bảng 2.
Tốc độ bồi/xói
Tốc độ bồi xói (mm/năm) được tính toán dựa trên dữ liệu ảnh vệ tinh Landsat năm 1979, 1992 và 2009 (30 năm). Từ các ảnh trên, dùng phần mềm ENVI 4.0 để tách ra đường bờ của hai thời kỳ bằng phương pháp chọn ngưỡng cho band 4 của ảnh Landsat TM và ETM+. Từ bản đồ đường bờ hai thời kỳ, giải đoán sự thay đổi bằng mắt, đường bờ được chia thành 41 đoạn dựa theo hiện tượng bồi, xói. Tốc độ bồi xói sẽ được tính toán bằng cách đo các khoảng cách của các đường bờ trong một đoạn và tính trung bình. Đới bờ của khu vực nghiên cứu có tất cả 10/41 đoạn xói lở (11,95/72,80 km) với tốc độ cao nhất lên đến -3,2m/năm, có 16/41 đoạn bờ bồi tụ (41,25/72,80 km) với tốc độ cao nhất khoảng +6,38 m/năm, và có 14/41 đoạn bờ ổn định (17,32 km) (bao gồm khu vực bờ nhân tạo và các vùng có kè bảo vệ). Vùng bờ càng xói thì mức độ tổn thương do mực biển dâng trong tương lai càng cao và ngược lại. Các phân cấp trong thang phân loại tổn thương được trình bày chi tiết ở bảng 2.
Độ dốc bờ biển (%)
Độ dốc vùng bờ thể hiện mối tương quan giữa mức độ tổn thương do ngập đến khả năng thay đổi của đường bờ; vùng bờ thoải có thể thay đổi (lùi về phía đất liền) nhanh hơn vùng bờ dốc [10].
Độ dốc bờ được tính toán dựa trên dữ liệu cao độ đáy biển của khu vực nghiên cứu. Đoạn bờ dùng để tính độ dốc được quy ước là phần bờ về phía biển và cách đường bờ 7,5 km. Độ dốc được tính bằng % tỷ số độ chênh cao mép bờ và vị trí cách bờ 7,5 km với khoảng cách giữa hai vị trí đó. Cứ mỗi đoạn bờ sẽ tính 3 điểm và lấy trung bình. Theo tính toán trong khu vực nghiên cứu, độ dốc lớn nhất là 0,95% và độ dốc nhỏ nhất là 0,44%. Theo phân cấp tổn thương, độ dốc càng thấp thì mức độ tổn thương càng cao. Các phân cấp trong thang phân loại tổn thương được trình bày chi tiết ở bảng 2.
Độ cao địa hình – Xây dựng kịch bản ngập 0,75 m
Nghiên cứu này sử dụng kịch bản mực biển dâng 0,75 m vào năm 2100 [2] làm cơ sở để dự báo. Phân vùng ngập do mực biển dâng được thực hiện dựa trên bản đồ địa hình, bản đồ sử dụng đất, ảnh Landsat và dữ liệu vệ tinh Google Earth. Khu vực nghiên cứu sẽ được phân thành hai vùng: trên 0,75 m và dưới 0,75 m.
Theo khảo sát thực địa, người dân đã tìm những vùng đất cao và an toàn để sinh sống, hầu như cao trình của các khu dân cư và đường giao thông đều trên 0,75 m. Vùng trên 0,75 m được xác định là các vùng: đất ở nông thôn và đô thị; đường giao thông; núi, đồi và các khu vực khác cao trên 0,75 m. Phần còn lại của khu vực nghiên cứu, bao gồm các kênh rạch, đầm hoặc các vùng trũng ngập nước, các khu vực RNM ven biển, các khu nuôi trồng thủy hải sản.
Theo kết quả tính toán (hình 11), vùng cao trên 0,75m có diện tích gần 170 km2, khu vực có cao độ dưới 0,75 m là khu vực dự báo ngập vào năm 2010 có diện tích khoảng 373 km2, chiếm tỉ lệ tới 68,84% toàn bộ khu vực nghiên cứu.
Dựa theo số liệu tính toán này, vùng bờ nào có độ cao địa hình trên 0,75m sẽ được xem là vùng ít bị tổn thương trong điều kiện mực biển dâng trong tương lai, và có thang điểm là 1 trong thang phân loại mức độ tổn thương; vùng bờ nào có độ cao địa hình dưới 0,75m sẽ có điểm đánh giá là 5 và là vùng có mức độ tổn thương rất cao.
Các thông số khác
Trong nghiên cứu này, các biến mực triều trung bình, chiều cao sóng trung bình và mực nước biển dâng toàn cầu được xem là đồng nhất cho tất cả 41 đoạn bờ. Điểm 3 cho ba biến này được cho theo thang phân loại nghiên cứu bờ biển Tây Ấn [10]: mực triều trung bình 0,95m [3], 5 điểm (mức độ tổn thương rất cao); chiều cao sóng trung bình 2,5m [3], mực nước biển dâng toàn cầu 3,1 mm/năm [3] đều 4 điểm (mức độ tổn thương cao).
5.Kết quả và thảo luận
Mức độ tổn thương được thể hiện trong hình 12. Giá trị CVI tính được trong khoảng 5,00 – 158,11. Giá trị trung bình là 38,63, trung vị 43,30, độ lệch chuẩn 46,83. CVI được chia thành 4 khoảng đều nhau theo giá trị của 25%, 50% và 75% là 13,69; 43,30; và 70,71. Mức độ tổn thương đường bờ sẽ được phân thành 4 cấp độ ứng với giá trị CVI như sau:
Hình 12. Tỉ lệ tổn thương bờ biển Hà Tiên – Kiên Lương tính theo phần trăm
Tổng chiều dài đường bờ khu vực nghiên cứu là 72,80 km. Trong đó, vùng tổn thương rất cao dài 16,19 km chiếm 22,24%; vùng tổn thương cao dài 28,11 km chiếm tỷ lệ cao nhất 38,61%; vùng tổn thương trung bình dài khoảng 14,97 km, chiếm 20,56%, và vùng tổn thương thấp dài 13,53 km, chiếm 18,59%. Kết quả phân vùng tổn thương được thể hiện trên bản đồ hình 13.
Bản đồ phân vùng (hình 13) cho thấy: khu vực tổn thương cao đa phần là các khu vực phân bố trầm tích bở rời; khu vực không có rừng ngập mặn che chắn; khu vực có kè bờ nhưng vị trí thường nằm trong khu vực cung lõm có hai mũi chắn, ví dụ các đoạn bờ thuộc vịnh Ba Hòn, Vịnh Cây Dương. Khu vực tổn thương rất cao là các đoạn bờ thuộc vịnh Thuận Yên, vịnh Hòn Chông.
Hình 13. Bản đồ phân vùng tổn thương đới bờ Hà Tiên – Kiên Lương
6. Kết luận
Dựa trên số liệu tính toán của tám yếu tố: địa chất, địa mạo, tốc độ bồi/xói, độ dốc bờ biển, độ cao địa hình, mực triều trung bình, chiều cao sóng trung bình và mực biển dâng trung bình, nghiên cứu này xác định được các mức tổn thương do mực biển dâng trong tương lai cho 41 đoạn bờ của vùng Hà Tiên – Kiên Lương. Kết quả cho thấy: 22,24% vùng bờ có mức độ tổn thương rất cao; 38,61% vùng bờ có mức độ tổn thương cao. Phần lớn bờ và bãi cấu tạo bởi trầm tích bở rời phân bố trong cung lõm giữa 2 mũi đều có mức độ tổn thương từ cao đến rất cao.
Tham Khảo
[1]. Hà Quang Hải và nnk (2009). Nghiên cứu, đánh giá và phân loại các Geosite phục vụ công tác bảo tồn các di sản thiên nhiên (Ví Dụ: Vùng Hà Tiên – Kiên Lương). Báo cáo Giai đoạn 1. Đề tài KHCN cấp Đại Học Quốc Gia trọng điểm.
[2]. Kịch bản Biến đổi khí hậu, nước biển dâng cho Việt Nam (2009). Bộ tài nguyên và môi trường.
[3]. Mai Trọng Nhuận và nnk (2009). Điều tra đặc điểm địa chất, địa động lực, địa chất khoáng sản, địa chất môi trường và dư báo tai biến địa chất vùng biển Phú Quốc – Hà Tiên tỉ lệ 1:100.000.
[4]. Nguyễn Ngọc Trân (2009). Ứng phó với Biến đổi Khí hậu và nước biển dâng. Tham luận tại Hội nghị Hội người Việt Nam tại Pháp. Tháng 5 và 6 năm 2009.
[5]. Trần Thục (2009). Biến đổi Khí hậu ở Việt Nam. Hội thảo Việt Nam thích ứng với biến đổi khí hậu – Hội An – Quảng Nam.
[6]. Trần Triết (chủ biên) (2001). Kỷ yếu hội thảo Bảo tồn và sử dụng tài nguyên đa dạng sinh học vùng đất ngập nước Hà Tiên – Kiên Lương, tỉnh Kiên Giang. ĐH KHTN, ĐH QG TPHCM.
[7]. Trương Công Đượng (chủ biên) (1998). Báo cáo đo vẽ Địa chất và tìm kiếm khoáng sản. Nhóm tờ Hà Tiên – Phú Quốc. tỷ lệ 1:50.000. Tập III: Địa mạo, Tân kiến tạo, Địa chất thủy văn. Liên Đoàn bản đồ Địa chất Miền Nam.
[8]. IPCC Special Report. Emissions scenarios (2000). Intergovernmental Panel on Climate Change. ISBN: 92-9169-113-5
[9]. Jeremy Carew–Reid. ICEM – International Centre for Environmental Management (2008). Rapid Assessment of the Extent and Impact of Sea Level Rise in Viet Nam.
[10]. G.S. Dwarakish, S.A. Vinay, Usha Natesan, Toshiyuki Asano, Taro Kakinuma, Katta Venkataramana, B. Jagadeesha Pai, M.K. Babita (2009). Coastal vulnerability assessment of the future sea level rise in Udupi coastal zone of Karnataka state, west coast of India. Ocean & Coastal Management 52 (2009) 467–478
[11]. Vivien M. Gornitz, Tammy W. Beaty, Richard C. Danielst (1997). A coastal hazards data base for the US. West Coast.
[12]. Integrated coastal zone management (ICZM) Glossary (2005).
Những năm trước, Bến Lội ở chân đèo Khánh Lê là điểm dừng chân học tập và giải trí của đoàn Thực tập môi trường đại cương, Khoa Môi trường. Tại đây – cảnh quan đẹp và hoang sơ, sinh viên được nghe giảng về tài nguyên nước đầu nguồn sông Cái Nha Trang, được lội nước, chơi trò cân bằng đá và tạo kiểu chụp hình cùng nhau, cùng với thày cô.
Năm nay, có một điểm học tập mới hấp dẫn hơn hẳn Bến Lội, đó là Ngã ba suối Sơn Thái. Ngã ba suối Sơn Thái trong một thung lũng rộng để lộ một cảnh quan y như các mô hình trong sách giáo khoa về địa mạo dòng chảy với sự đa dạng địa hình: bãi bồi lòng sông, các bậc thềm, các vết lộ đá gốc, các vách xói lở, các mặt trượt do xâm thực chân vách…
Ngã ba suối Sơn Thái – một điểm học tập hay, một điểm giải trí lý thú, một cảnh tự nhiên đẹp không thể không dừng lại mỗi khi đi qua.
Từ Bến Lội
Năm 2011, lấy lí do tuyến đường đèo Ngoạn Mục đang sửa chữa nên các bác tài đề nghị đi đèo Khánh Lê xuống Nha Trang. Thực ra các bác tài thích đi tuyến này hơn vì rút ngắn lộ trình tới 90 km. Vậy là phải bổ sung mấy điểm mới cho tuyến hành trình thực tập, chưa có lộ trình tiền trạm nên phụ trách đoàn vừa đi vừa tìm điểm dừng để sinh viên học tập. Bến Lội là một điểm như vậy.
Xuống chân đèo Bidoup – Khánh Lê thường vào khoảng 11:00; đoàn dừng lại nghỉ ăn trưa, mấy quán lợp tole đơn giản là nơi thày cô và sinh viên lấy cơm hộp ra ăn, gọi nước uống. Cơm, nước xong; đi khảo sát loanh quanh, phát hiện một lòng suối có bãi cuội rộng khoảng 50 m, kéo dài tới 200 m, nước ngập chưa đến đầu gối, chảy nhẹ; thế là cả đoàn xuống vui chơi, giải trí cả một giờ đồng hồ.
Từ những năm sau đó, Bến Lội chính thức được đưa vào chương trình học tập. Bến Lội được xem là điểm chuyển tiếp lộ trình giữa núi – cao nguyên sang đồng bằng ven biển. Tại đây có quán Bến Lội, chủ quán làm bậc thềm xuống bãi nên rất tiện cho việc đi lại.
Thày Tự Thành (trưởng đoàn) có ý định không ăn cơm hộp buổi trưa tại Bến Lội nữa; được thày Cảnh giới thiệu quán Chân Đèo có ông chủ quán luôn vui vẻ và giá cả phục vụ phải chăng. Thế là năm 2016, qua điện thoại đoàn đặt cơm trưa tại quán Chân Đèo. Cơm nóng, đồ ăn ngon, giá tốt, chủ quán nhiệt tình (xem Nhật kí thực tập môi trường 2016). Cơm trưa xong, thày trò hành quân xuống Bến Lội khoảng 1 km.
Năm ngoái cũng vậy, cơm trưa xong, thày trò lại hành quân xuống Bến Lội nhưng chuẩn bị theo bậc thềm xuống bãi thì bị chủ quán làm khó – nguyên nhân có lẽ là đoàn đặt ăn ở quán Chân Đèo. Trưởng đoàn nói gì đó, rồi chủ quán cũng cho qua. (Thực ra thì đoàn đã liên hệ đặt ăn tại quán Bến Lội rồi, nhưng mắc nên thôi).
Đến Ngã ba suối Sơn Thái
Năm nay chủ quán Chân Đèo (ông Nguyễn Luật) liên hệ với địa phương (lãnh đạo xã Sơn Thái) và trực tiếp dẫn đoàn đến bãi Ngã ba suối (tạm gọi Ngã ba suối Sơn Thái). Ngã ba suối đẹp đến không ngờ cả về cảnh quan địa mạo và những vết lộ địa chất, địa chất môi trường.
Ngã ba suối Sơn Thái cách Bến Lội hơn 1 km về phía thượng nguồn. Có thể sơ bộ về địa tầng, địa mạo và các vấn đề môi trường tại đây như sau:
Về địa chất: Ven suối lộ đá phiến màu đen thuộc hệ tầng La Ngà, phía trên là vỏ phong hóa có màu nâu đỏ dày tới 10 m. Giữa lòng suối, rải rác nhô lên các khối đá granit thuộc phức hệ Đèo Cả. Bãi đá cuội, tảng mài tròn kích thước từ vài cm đến 30 – 50 cm, một số tảng tới 1,0 m chủ yếu có màu xám sáng với ba loại đá cơ bản gồm ryolit, ryodacit; granit và đá phiến. Nhìn chung kích thước cuội tảng lớn hơn bãi đá Bến Lội.
Về địa mạo: các tích tụ lòng suối và bãi bồi cuội tảng, cát phân bố bên bờ lồi khúc uốn; vách xói lở, vách trượt đất phân bố nơi lạch sâu áp sát bờ. Một hệ thống bậc thềm quan sát khá rõ: Thềm 1 nguồn gốc tích tụ, cao 3,0 – 4,0 m gồm các lớp sạn, sỏi xen các lớp cuội. Thềm 2 nguồn gốc xâm thực, cao 7,0 -8,0 m. Thềm 3 cũng là thềm xâm thực, cao 10 – 12 m. Thềm 2 và thềm 3 đều lộ vỏ phong hóa từ trầm tích La Ngà.
Về môi trường: các vách xâm thực và mặt trượt mới xảy ra lộ rất rõ, việc canh tác (chặt bỏ lớp phủ thực vật) gây xói mòn đồi thềm cao dẫn đến tích tụ trên mặt thềm thấp.
Chủ quán Chân Đèo vừa đọc thơ, vừa mời rượu các thày, cô trong bữa cơm trưaTrước khi dẫn đoàn xuống suối, chủ quán dừng lại đọc thơChân vách trượt lộ đá phiến sét màu xám đen (đá gốc) phân lớp mỏng cắm dốc 70o về lòng suốiXâm thực để lộ các khối đá granit giữa lòng suốiTrong một khung hình có nhiều dạng địa hình: thềm 1, thềm 2, thềm 3; trầm tích cuội lòng suối, xâm thực lộ đá granit, đá phiến sét và vết trượt thềm 2 và 3Thềm 1 xâm thực mạnh vào kỳ mưa lũVách xâm thực để lộ cấu tạo thềm bậc 1Đá phiến sét phân lớp mỏng, mặt lớp láng bóng trở thành mặt trượt. Quá trình xâm thực chân vách dẫn đến hình thành khối trượt kiểu tịnh tiếnCuội, sỏi lòng sông là nguồn vật liệu xây dựng của người dânNgã ba suối là nơi “bẫy” nhưng khối gỗ lớn mà ai đó đã (khai thác) trên vùng núi cao